The Synthesis and Characterization of Hydrotris(1-pyrazolyl)borate Complexes of Technetium(III) and Rhenium(V) and (III)

MICHAEL J. ABRAMS, ALAN DAVISON

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Mass. 02139, U.S.A.

and ALUN G. JONES

Harvard Medical School and Brigham & Women's Hospital, Boston, Mass. 02115, U.S.A.

Received June 30, 1983

The new Re(V) oxo species, $ReOCl_2HB(pyz)_3$ (where $HB(pyz)^{-1} = hydrotris(1-pyrazolyl)borate$) has been prepared and characterized by elemental analysis, optical, IR, and ¹H NMR spectroscopy and conductivity measurements. The reactions of this complex and its Tc(V) analog with triphenylphosphine and the synthesis and characterization of the new Re(III) and Tc(III) complexes. $MCl_2LHb-(pyz)_3$ ($M = Re, L = Ph_3P$; $M = Tc, L = Ph_3P$, Ph_3 -PO, and Py), are described.

Introduction

One common way of preparing monomeric complexes of Re(III) is to react a Re(V) oxo species with a reducing ligand capable of forming an oxide (e.g. triphenylphosphine) [1]. Although a large number of Tc(III) complexes have been prepared in recent years [2], none have been prepared via the oxygen abstraction/reduction reaction of an isolated Tc(V) oxo species. We now report the synthesis and characterization of several new Tc(III) complexes of the type $TcCl_2LHB(pyz)_3$ (L = Ph₃PO, Ph₃P, Py). The first two of these complexes were prepared via the known Tc(V) oxo species, TcOCl₂HB(pyz)₃ [3, 4] while the pyridine complex was prepared starting from $TcCl_2(Ph_3PO)HB(pyz)_3$. Also, the new Re(V) species, $ReOCl_2Hb(pyz)_3$ has been prepared and its chemistry compared to its Tc analog.

Experimental

Technetium as $NH_4^{99}TcO_4$ was obtained as a gift from New England Nuclear (NEN), Billerica, MA. All manipulations were carried out in laboratories approved for low level radioactivity (⁹⁹Tc is a weak

0020-1693/84/\$3.00

 β -emitter with a half life of 2.12 × 10⁵ years and particle energy of 0.292 MeV). All precautions followed have been detailed elsewhere [5, 6]. Rhenium, as NaReO₄, was obtained from Cleveland Refractory Metals, Solon, OH.

Infrared spectra were recorded in the range 4000-300 cm⁻¹ on a Perkin-Elmer PE180 grating infrared spectrophotometer as KBr pellets. Optical spectra, in were measured with a Cary solution, 17 spectrophotometer. Conductivity measurements were performed in acetonitrile using a Yellow Springs model 3403 conductivity cell and a Beckman RC-16C conductivity bridge. Magnetic susceptibility measurements were made on methylene chloride solutions via the Evans NMR method [7] using a Varian T-60 spectrometer. ¹H NMR measurements were also obtained with the T-60 using acetone-d₆ as solvent and TMS as internal calibrant. Melting points were obtained with a Mel-Temp apparatus and are uncorrected. Field desorption mass spectra were measured with a Varian Mat 731 instrument described elsewhere [8]. Prior to use, distilled water was passed through a Barnstead Ultrapure D8902 cartridge, followed by redistillation in a Corning AG-1 water still. Potassium hydrotris(1-pyrazolyl)borate (KHB- $(pyz)_3$) was prepared using a literature method [9] and all other chemicals were used without further purification. Elemental analyses were performed by Atlantic Microlab, Inc., Atlanta, GA, Schwarzkopf Microanalytical Laboratory, Woodside, N.Y., and Galbraith Laboratories, Inc., Knoxville, TN.

Preparation of Oxodichloro[hydrotris(1-pyrazolyl)borato] technetium(V) (TcOCl₂Hb(pyz)₃)

To a slurry of 0.50 g of KHB(pyz)₃ (2.0 mmol), ethanol (0.15 ml) and 12 N HCl (2.0 ml), 1.0 ml of 0.399 M NH₄TcO₄ (0.40 mmol) was added. The mixture was refluxed for 30 min. The deep pea green

© Elsevier Sequoia/Printed in Switzerland

63% based on Tc; m.p. ~220 °C dec. Anal. Calcd for $C_9H_{10}BCl_2N_6OTc: C, 27.29; H, 2.53; N, 21.07;$ Cl, 17.77. Found: C, 27.04; H, 2.55; N, 21.03; Cl, 17.70. The optical, IR and ¹H NMR spectra of this material are in good agreement with literature values [3, 4].

Preparation of Oxodichloro[hydrotris(1-pyrazolyl)borato] rhenium(V) (ReOCl₂HB(pyz)₃)

This blue, crystalline compound was prepared from NaReO₄ in 40% yield similarly to TcOCl₂-HB(pyz)₃ by refluxing the reaction mixture for 2 h, m.p. ~250 °C dec. *Anal.* Calcd for C₉H₁₀BCl₂N₆-ORe: C, 22.23; H, 2.08; N, 17.29; Cl, 14.58. Found: C, 22.43; H, 2.08; N, 17.42; Cl, 14.79. Optical Spectrum (acetonitrile): 685 nm ($\epsilon = 1.3 \times 10^2$ l mol⁻¹ cm⁻¹), 259 (1.3 × 10⁴). IR (KBr): 3125(m), 2515(m), 1500(s), 1440(w), 1405(vs), 1385(s), 1305(vs), 1210(vs), 1185(s), 1175(s), 1115(vs), 1070(s), 1045(vs), 990(sh), 975(vs), 925(w), 915(w), 890(w), 860(w), 815(w), 785(s), 765(vs), 715(m), 705(s), 660(w), 640(s), 605(s), 335(s), 315(s).

Conductivity (acetonitrile, 10^{-3} M): $\Lambda_{\rm M} = 2.4$ ohm⁻¹ cm² mol⁻¹.

¹H NMR: 8.3(d), 7.7(d), 7.4(d), 6.7(t), 6.1(t) (integration ratio 4:1:1:2:1).

Preparation of Dichlorotriphenylphosphine [hydrotris(1-pyrazolyl)borato] technetium(III) (TcCl₂-(Ph₃P)HB(pyz)₃)

A slurry of TcOCl₂HB(pyz)₃ (0.19 g, 0.45 mmol) and triphenylphosphine (0.61 g, 2.3 mmol) in toluene (30 ml) was refluxed for 30 min. The resulting dark orange solution was cooled to room temperature and filtered. Ether (250 ml) and hexane (100 ml) were added to the filtrate which was then chilled $(-15 \degree C)$ for several days. The resulting dark yellow solid was recrystallized from an acetone/hexane/ ether (1:1:5 v/v) mixture at -15 °C yielding dark yellow crystals which were washed with isopropanol $(3 \times 5 \text{ ml})$ and dried in vacuo. Yield of TcCl₂(Ph₃P)-Hb(pyz), 0.21 g, 0.33 mmol, 73% based on Tc; m.p. ~150 °C dec. Anal. Calcd for C₂₇H₂₅BCl₂N₆-PTc: C, 50.25; H, 3.91; N, 13.03; Cl, 10.99; P, 4.80. Found: C, 50.29; H, 4.05; N, 12.93; Cl, 11.18; P, 4.82. Optical spectrum (acetonitrile): 425 (1.5 X 10^3), 360(sh), 315(sh), 275(1.1 × 10⁴). IR (KBr): 3120(w), 3050(w), 2505(sh), 2490(m), 1495(s), 1480(s), 1430(vs), 1400(vs), 1385(s), 1315(s), 1295(s), 1205(vs), 1185(s), 1155(w), 1115(vs), 1090(s), 1070(s), 1045(vs), 995(m), 980(s), 915(w), 875(m), 845(w), 810(m), 785(s), 760(vs), 745(vs), 735(s), 720(m), 705(vs), 690(vs), 650(m), 610(s), 525(vs), 505(s), 490(s), 450(m), 425(m), 415(m), 325(s), 310(s).

Conductivity (acetonitrile, 10^{-3} M): $\Lambda_M = 3.2$ ohm⁻¹ cm² mol⁻¹.

Magnetic moment: μ_{eff} (308 K) = 2.9 B.M. (+) FDMS m/z 644 (calcd for C₂₇H₂₅BCl₂N₆PTc = 644).

Preparation of Dichlorotriphenylphosphine[hydrotris-(1-pyrazolyl)borato] Rhenium(III) ($ReCl_2(Ph_3P)HB-(pyz)_3$)

Pale coral red crystals of this complex were prepared in 67% yield similarly to $TcCl_2(Ph_3P)HB(pyz)_3$ by refluxing a mixture of $ReOCl_2HB(pyz)_3$ (0.16 g, 0.33 mol) and triphenylphosphine (1.01 g, 3.9 mmol) in toluene. The analytical sample was dried for 12 h at 65 °C *in vacuo*, m.p. ~215 °C. *Anal.* Calcd for $C_{27}H_{25}BCl_2N_6PRe: C, 44.27; H, 3.45; N, 11.48; Cl, 9.68; P, 4.23. Found: C, 44.40; H, 3.54; N,11.37; Cl, 9.85; P, 4.39. Optical spectrum (acetonitrile): 360(sh), 272(1.6 × 10⁴). IR (KBr): similar to <math>TcCl_2(Ph_3P)HB(pyz)_3$. Conductivity (acetonitrile, 10^{-3} *M*): $\Lambda_M = 1.7$ ohm⁻¹ cm² mol⁻¹. Magnetic moment: μ_{eff} (308 K) = 2.1 B.M.

Preparation of Dichlorotriphenylphosphineoxide [hydrotris(1-pyrazolyl)borato] technetium(III) (Tc-Cl₂(Ph₃PO)HB(pyz)₃)

To a solution of TcOCl₂HB(pyz)₃ (0.15 g, 0.38 mmol) in methylene chloride (10 ml), triphenylphosphine (0.14 g, 0.54 mmol) in methylene chloride (5.0 ml) was added dropwise. The yellow solution was stirred for 5 min and its volume halved in vacuo. Ether (150 ml) was added precipitating a pale orangeyellow crystalline solid. This material was collected, washed with ether (15 ml) and dried in vacuo. Yield of TcCl₂Ph₃POHB(pyz)₃, 0.22 g, 0.33 mmol, 87% based on Tc; m.p. ~180 °C dec. Anal. calcd for C₂₇H₂₅BCl₂N₆OPTc: C, 49.04; H, 3.82; N, 12.71; Cl, 10.72; P, 4.68. Found: C, 49.13; H, 3.85; N, 12.61; Cl, 10.61; P, 4.64. Optical spectrum (acetonitrile): 350(sh), 315(sh), 272(sh), $265(1.7 \times 10^4)$. IR (KBr): 3110(w), 3050(w), 2505(sh), 2490(m), 1585(w), 1495(s), 1485(m), 1435(s), 1395(vs), 1385(s), 1305(s), 1205(vs), 1185(m), 1160(m), 1140(vs), 1115(vs), 1080(s), 1070(s), 1045(vs), 1025(m), 990(m), 980(s), 850(w), 810(w), 785(s), 770(s), 745(s), 720(vs), 705(s), 690(s), 660(m), 645(m), 610(m), 535(vs), 515(sh), 455(w), 440(w), 410(w), 365(w), 330(m), 310(m). Conductivity (acetonitrile, 10^{-3} M): $\Lambda_M = 1.9$ ohm⁻¹ cm² mol⁻¹. Magnetic moment: μ_{eff} (308 K) = 3.0 B.M. (+)FDMS m/z 661 (calcd for $C_{27}H_{25}BCl_2N_6OPTc = 661$).

Preparation of Dichloropyridine[hydrotris(1-pyrazolyl)borato] technetium(III) ($TcCl_2(Py)HB(pyz)_3$)

A solution of $TcCl_2(Ph_3PO)HB(pyz)_3$ (0.18 g, 0.27 mmol) in acetone (20 ml) and pyridine (5.0 ml)

was refluxed for 2 h. Solvent was removed in vacuo until the volume of the reaction mixture was ~ 10 ml. Ether (40 ml) was added and the yellow solution was chilled for 12 h at -15 °C. The resulting redbrown crystals were collected, washed with ethanol (15 ml) and dried in vacuo. Yield of TcCl₂(Py)HB-(pyz)₃ 0.11 g, 0.24 mmol, 89% based on Tc; m.p. ~255 °C dec. Anal. Calcd for $C_{14}H_{15}BCl_2N_7Tc$: C, 36.39; H, 3.28; N, 21.22; Cl, 15.34. Found: C, 36.40; H, 3.30; N, 21.15; Cl, 15.31. Optical spectrum (acetonitrile): 365(sh), 315(sh), $275(1.7 \times 10^4)$. IR (KBr): 3120(m), 3105(m), 2510(m), 1605(s), 1495(s), 1485(m), 1445(s), 1425(m), 1395(vs), 1385(s), 1305(vs), 1205(vs), 1185(s), 1155(m), 1115(vs), 1095(m), 1070(s), 1040(vs), 1015(m), 985(s), 895(m), 810(m), 795(s), 775(vs), 760(vs), 710(s), 695(s), 665(s), 655(s), 645(sh), 615(sh), 610(s), 440(m), 370(s), 340(s), 310(s). Conductivity (acetonitrile, 10^{-3} M): $\Lambda_M = 1.9$ ohm⁻¹ cm² mol⁻¹. Magnetic moment: μ_{eff} (308 K) = 2.8 B.M.

Results and Discussion

The new Re(V) oxo species, ReOCl₂HB(pyz)₃ has been prepared by refluxing an ethanolic HCl solution of NaReO₄ with an excess of the HB(pyz)₃⁻¹ ligand, which acts as a reducing agent. The known Tc(V) analog of this species can also be conveniently prepared by this procedure. The optical, IR, and ¹H NMR spectral characteristics of the Re(V) species are very similar to those of its Tc analog [3]. The optical spectrum of ReOCl₂HB(pyz)₃ is blue shifted with respect to TcOCl₂HB(pyz)₃ (bands at 685 and 259 nm for Re ν s. 784 and 311 for Tc) resulting in the blue color of the Re complex.

The two complexes exhibit different reactivity with respect to triphenylphosphine. Unlike its Re analog, TcOCl₂HB(pyz)₃ reacts with Ph₃P at room temperature in methylene chloride solution to form a Ph₃PO complex of Tc(III), TcCl₂(Ph₃PO)HB- $(pyz)_3$. In refluxing toluene solution, in the presence of excess Ph_3P , both the Tc and Re oxo species form the analogous Ph₃P complexes. No reaction was observed when an acetone solution of TcCl₂- $(Ph_3PO)HB(pyz)_3$ and excess Ph_3P was stirred for 4 h at room temperature but TcCl₂(Ph₃P)-HB(pyz)₃ was readily formed by refluxing the reaction mixture for 30 min. By refluxing TcCl₂- $(Ph_3PO)HB(pyz)_3$ in an acetone/pyridine solution $TcCl_2(Py)HB(pyz)_3$ can be prepared. All of the Tc(III) and Re(III) complexes have been characterized by elemental analysis, optical and IR spectroscopy, conductivity and magnetic susceptibility. In addition, the Tc(III) Ph₃P and Ph₃PO complexes have been characterized by positive ion field desorption mass spectrometry. In both of these complexes the signals associated with the M⁺ species are the

only features found in the +FD mass spectra. All of the Tc(III) and Re(III) compounds described here are non-electrolytes in acetonitrile solution and exhibit magnetic moments (2.1 B.M. for ReCl₂-(Ph₃P)HB(pyz)₃ and between 2.8 and 3.0 B.M. for the Tc(III) complexes) consistent with their formulation as trivalent, six-coordinate Re and Tc complexes [1, 10].

In their infrared spectra both the Tc and Re oxo species have a single peak at ~2500 cm⁻¹ due to the B-H stretch. In the MCl₂LHB(pyz)₃ (M = Re, L = Ph₃P; M = Tc, L = Ph₃P, Ph₃PO) complexes there is a shoulder on the high energy side of this band. This feature persists in the solution (methylene chloride) spectra of the compounds and can be attributed to the B₁₀/B₁₁ isotope effect [9]. The 1140 cm⁻¹ band in the IR spectrum of TcCl₂-(Ph₃PO)HB(pyz)₃ is assigned to the P=O stretch. The ν (P=O) in uncomplexed Ph₃PO occurs at 1193 cm⁻¹ and the shift to lower energy upon complex formation is consistent with the ligand bonding through its oxygen atom [11].

The oxidation of phosphines by metal oxo complexes is well established in the literature [12-14]. Meyer et al. have shown that the reaction of Ph_3P with the Ru(IV) cation, [(bpy)₂PyRuO]²⁺ (where bpy is 2,2'-bipyridine) in acetonitrile to form the Ru(II) species, $[(bpy)_2PyRu(CH_3CN)]^{2+}$ proceeds via an intermediate Ph₃PO complex of Ru(II) [14]. Due to the lability of the Ph₃PO ligand the intermediate complex was not isolated. In the Tc(V)/Tc(III) system discussed here the Tc(III) Ph₃PO complex can be isolated and characterized, but the Ph₃PO ligand can be readily replaced (by Ph₃P or Py). The fact that $ReOCl_2HB(pyz)_3$ reacts with Ph₃P only under more forcing conditions is in keeping with the observation that Re complexes are more difficult to reduce than their Tc analogs [15, 16].

Lastly, it must be noted that not all Tc(V) oxo complexes react with Ph_3P to form Ph_3PO and a reduced Tc species. While $[TcOCl_4]^-$ reacts with Ph_3P in acetonitrile to form an orange crystalline material thought to be $Tc_2Cl_5(Ph_3P)_3$ [17], the bis(ethanedithiolato) complex, $[TcO(edt)_2]^{-1}$ does not react with Ph_3P , even in refluxing acetonitrile [5]. Therefore, the stability of the Tc(V)oxo core with respect to oxygen abstraction is very much a function of the other ligands in the coordination sphere.

Acknowledgements

This work was funded by USPHS grant No. GM23270 and U.S. Department of Energy contract No. DE-AC02-81EV10649. The authors thank Cathy Costello (Department of Chemistry, M.I.T.) for obtaining field desorption mass spectra.

References

- 1 G. Rouschias, Chem. Rev., 74, 531 (1974).
- 2 A. G. Jones and A. Davison, Int. J. Appl. Radiat. Isot., 33, 867 (1982).
- 3 R. W. Thomas, G. Estes, R. C. Elder and E. Deutsch, J. Am. Chem. Soc., 101, 4581 (1979).
- 4 R. W. Thomas, A. Davison, H. S. Trop and E Deutsch, Inorg. Chem., 19, 2840 (1980).
- 5 A. Davison, C. Orvig, H. S. Trop, M. S. Sohn, B. V. DePamphilis and A. G. Jones, Inorg. Chem., 19, 1988 (1980).
- 6 F. A. Cotton, A. Davison, V. W. Day, L D. Gage and H. S. Trop, *Inorg. Chem.*, 18, 3024 (1979).
- 7 D. F. Evans, J Chem. Soc., 2003 (1959).
- 8 B. W. Wilson, C. E. Costello, S. A. Carr, K. Biemann, C. Orvig, A. Davison and A. G. Jones, *Anal. Lett.*, 12(A3), 303 (1979).

- 9 S. Trofimenko, J. Am. Chem. Soc., 89, 3170 (1967).
- 10 E. Deutsch, K. Libson, S. Jurisson and L. F. Lindoy, Prog. Inorg. Chem., 30, 75 (1983).
- 11 K. Nakamoto, 'Infrared and Raman Spectra of Inorganic and Coordination Compounds', 3rd ed., Wiley: New York, 1978.
- 12 R. Durant, C. D. Barner, M. R. Hyde and F. E. Mabbs, J. Chem. Soc. D, 955 (1977).
- 13 J. R. Dilworth, B. D. Neaves, J. P. Hutchinson and J. A. Zubieta, Inorg. Chim. Acta, 65, L223 (1982).
- 14 B. A. Moyer, B, K. Sipe and T. J. Meyer, Inorg. Chem., 20, 1475 (1981).
- 15 A. Davison, A. G. Jones and M. J. Abrams, Inorg. Chem., 20, 4300 (1981).
- 16 H. S. Trop, A. Davison, A. G. Jones, M. A. Davis, D. J. Szalda and S. J. Lippard, Inorg. Chem., 19, 1105 (1980). 17 H. S. Trop, Ph.D. Thesis, Massachusetts Institute of
- Technology, 1979.